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Geometry of Adiabatic Changes. General Analysis 

L e v o n  S. D a v t y a n  1~ 

Received May 29, 1996 

The concept of adiabatic change and related notions are discussed. As a 
representative example, the evolution of a neutron spin in a precessing magnetic 
field is described briefly. The general setting of the equations for Dirac's evolution 
coefficients is discussed from the geometric phase point of view. An exactly 
solvable model of nutation is exhibited and the properties of the solutions are 
analyzed to reveal the holonomic structure of the problem. The corresponding 
expression for the geometric phase differs nontrivially from the corresponding 
expression in the well-known case of the precessing field. In addition, this 
geometric phase has an imaginary part which completes the picture of spin 
evolution in a nutation mode. The approach proposed for nutation is used to 
reexamine the twisted Landau-Zener problem. 

� 9  Thus ~/~(C) is given by a circuit integral in parametric space and is independent 
of how the circuit is traversed (provided of course that this is slow enough for 
the adiabatic approximation to hold). 

M. V. Berry 

1. I N T R O D U C T I O N  

The geometric phase is a subject o f  active study. The number  o f  publica- 
tions analyzing different mathematical aspects and experimental consequences 
o f  its existence, beginning with Berry 's  (1984) pioneering paper, is impressive. 
Moreover,  recent investigations have developed further the general picture 
drawn by Berry, Simon, Hannay, Aharonov,  and Anandan et  al. (see Mukunda  
and Simon, 1993). Nevertheless, it is worthwhile returning and considering 
in greater detail the most  typical case, that o f  the evolution o f  the neutron 
spin accompanying  the movement  o f  a magnetic  field. This paper originated 
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with an unsuccessful attempt to apply existing statements of the geometric 
phase calculation in the case of essentially nonadiabatic spin (characteristic 
vector) evolution under an arbitrary and finite movement rate of the magnetic 
field (parametric vector). 

Unfortunately, the scheme of adiabatic iteration developed in Berry 
(1987) cannot be accepted as consistent or applicable, and Berry's (1990) 
second consideration seems to have originated in a dissatisfaction with the 
previous analysis. The argument for a new consideration arises naturally at 
the level of intuition: for an arbitrary excursion, a complex generalization of 
the geometric phase seems inevitable. 

It must be stressed that the notion of a complex geometric phase is not 
new and was well developed by Garrison and Wright (1988) for dissipative 
systems. We will not discuss this work because it represents an example of 
the standard way of generalizing on the basis of non-Hermitian Hamiltonians, 
which, as a consequence, usually leads from real parameters to their complex 
counterparts. Another approach leading to the notion of the complex geometric 
phase was developed by Alber and Marsden (1994) in connection with 
solitons. 

Berry's second consideration appeals to Dykhne's calculation connected 
with integration of the quantum amplitude through the introduction of the 
complex time plane. Is the picture of a geometric amplitude drawn in this 
paper complete? Appropriate remarks can be found in Section 6. 

On the other hand, an arbitrary excursion implies the possibility of a 
nonadiabatic evolution of the system. Is Aharonov and Ananadan's (1987) 
consideration of the nonadiabatic case, founded on the assumption of unitarity, 
the most general one? It will be shown in Section 4 that the latter, in particular, 
does not cover the case presented in Section 5. 

2. ADIABATIC CHANGE 

The conclusions leading to the notion of adiabatic change can be initiated 
with the following simple illustration. Let us take the hand of a watch. The 
rod about which the hand rotates can be taken as an axis in a manner which 
permits comparatively free turning of the hand. 

Now, let us transport this construction along a plane, always keeping 
the rod vertical. We see that the initial and final positions of the hand, after 
an excursion along a closed path, coincide if the speed of the motion is slow 
enough. From the geometric point of view, this result points out that the 
parallel transport law was fulfilled locally by the watch hand. 

Definition 1. The changes in a physical system are adiabatic if they are 
caused by a parametric vector moving slowly enough that the characteristic 
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vectors of the physical system move in accordance with the parallel trans- 
port law. 

Now, if we place our construction on the surface of a cone, we observe 
an angle between the initial and final positions of the watch hand even for 
a motion with very slow speed. This is the so-called (an)holonomy effect, 
caused by the nonlocal difference between the cone surface and a plane. 

The value of this angle is equal to the cone angle and is obtained as a 
result of local conservation of the parallel transport law. One could easily 
generalize this result for a particular movement on the sphere figured here 
as a sequence of parallel movements along the corresponding tangential 
cones, and arrive at the solid angle law 

CXN = I~N = (1 -- COS 0)A~b 

for movement crossing the north pole, and 

CXs = f~s = (1 + cos  0 ) A ~  

for movement crossing the south pole. 
Furthermore, it can be easily shown that the solid angle law remains 

valid for the movement of the watch hand having an arbitrary configuration 
on the sphere and under an arbitrary radial deformation. Consequently, we 
can confirm that aN and ets are topological invariants. In the quantum setting, 
consideration passes to the Hilbert space with the corresponding notions of 
horizontal and vertical lifts for the wave functions (Bohm et al., 1991). 

Does this picture of adiabatic change hold in the case of the quantum 
evolution of neutron spin in a magnetic field? Is there a real difference 
between the terms "topological" and "geometrical" (phase), which are usually 
identified in the context of holonomy analysis? 

The Cartesian representation of the Hamiltonian of a neutron spin in a 
magnetic field is 

But this representation is not convenient for the consideration below. The 
natural map for investigating the holonomy effects is a spherical one. In 
particular, it is evident from the natural ad hoc separation of the variables 
for a slow movement: H, accounting for the dynamic phase, and the angular 
variables dp and 0, which, in principle, can generate holonomic phenomena. 
So let us rewrite and hereafter use the Hamiltonian in spherical representation 

n ( cos 0 sin 0 e-i'b~ 
"\sin 0 e i* - c o s  0 ] 
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Two corresponding solutions of Pauli's equation 

ih ~ = - 2 ~ H ~  

for opposite projections of the spin can be obtained easily and read as follows: 

_i~, a J  cos( OI2 ). e-i* ~ 
�9 ~(0, ~b) = e L [ sin(0/2) ) (1) 

i~ttlJ - sin(0/2).e-i*'~ 
~~ dp) = e [ cos(0/2) ) (2) 

where 0 and ~b are the respective polar and azimuthal angles of the quantization 
axis (H) in the chosen coordinate frame, tot = 21 p~lHIh is the frequency of 
the Larmor precession, and p, is the magnetic momentum of the neutron, H 
= I I-II. The following must additionally be stressed: these often cited and 
dedicated solutions describe the neutron spin evolution in an arbitrarily ori- 
ented and homogeneous magnetic field. However, the problem of neutron 
spin evolution in a magnetic field is unique. After passing from the stationary 
problem (1), (2), one also has an exactly solvable problem for the case of a 
precessing magnetic field with the corresponding (time-dependent) Schrtd- 
inger equation (Landau and Lifshitz, 1977). Moreover, as will be shown in 
Section 5, we can point to an alternative to the precession mode that completes 
the picture of neutron spin evolution naturally and which also has an exact 
solution. 

For the conclusions below, in addition to the definition of adiabatic 
changes, the following two notions need to be specified: 

Definition 2. The weak nonadiabatic changes in a physical system are 
those caused by the movement of the vector parameter with a finite rate, but 
which conserve the parallel transport law for the characteristic vectors of the 
physical system. 

Definition 3. The strong nonadiabatic changes in a physical system are 
those which are accompanied by violations of the characteristic vector parallel 
transport law and can be caused by infinitely slow movement of the external 
vector parameter. 

We now present a more detailed consideration. 

3. PRECESSION 

By a precessing (or rotating) field configuration we mean the following 
specific time dependence of the magnetic field components: 

Hx = H sin 0 cos(tot + dp) 

Hy = H sin 0 sin(tot + 6) (3) 

H z = H cos 0 
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where co is the angular rate corresponding to a rotation around the z axis, 
with the strength H and polar angle 0 constants. 

The solutions of Pauli's equation for the precessing field case are well 
known and can be written as follows: 

�9 (t) = C+~+(t) + C_~_( t ) ,  I C+[ 2 "1" [ C -  [2 = 1 (4) 

/ / A  +to E C..~SO ~- tO e_i(tot+,)' 

e-i(A-~ | | ~ /  2A 
xit+(t) = / / A - t'~ cOs O + t~ (5) 

- COL COS 0 + to _. .  \ 

W_(t) = e i(A+o')az / A  + o~ L cos 0 - to ] (6) 

where 

A = ~/(to - tOE COS 0) 2 + ~ sin20 

It must be stressed that the ~_+ are orthogonal: 

OI,+, ~I,_)  = o 

Under the substitutions 

O / A  + COL cos 0 - o ~  
cos ~ = ~ /  2A (7) 

= o t  + dp (8) 

the spinors in the expressions above can be rewritten in a form similar to 
(1), (2): 

_i(A_~)aJCos(O[2) e-i*~ 
~I~+(t) = eia+a~r+(t) = e [ sin(O/2) ) 

i(A +~)a2[--sin( O/2 ) e-i~ ~ 
�9 _(t) = ei~-~_(t) = e ~ cos(O/2) ) 

(9) 

(lO) 

These are the states with the following definite projection on the z axis: 

(~+_, Sz~+_) = - �89 0 (11) 
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In the Aharonov and Anandan (1987) approach, as was shown particu- 
larly by Bodnarchuk et  al. (1996), the phases of the exponents before the 
spinors in (9), (10) can be expressed in a surprising manner through O and 
~, too:  

A - to toL c o s ( O -  O) (1 + cos O) Aq~ 
oL+= - - t -  t +  (12) 

2 2 2 

A + to toL cos(0 - O) (1 - cos O) A ~  
I x _ -  - -  t -  t +  (13) 

2 2 2 

where Aq~ = q) - dO (=  tot). As a result, we arrive at formulas showing that 
the values of  the dynamic phases 

--toL COS(0 -- O) 
13_* = + 2 t (14) 

differ from ~ ___ by the Aharonov-Anandan phases: 

(1 _+ cos  O)  A ~  
(15) 

The Aharonov-Anandan phases are equal and can also be obtained in 
the considered case directly from the known spinor parts through integration 
over the corresponding holonomy connections, 

I0( ) ~• = Ix_. - 13_* = / ,/,_*, ~ ,i,_* d,r (16 )  

These changes vanish when there is no precession (to = 0) and are equal 
to the Berry phases in the adiabatic mode (to ---) 0) 

(1 _+cos 0) Aq~ 

2 
(17) 

For the components of the observable polarization vector, in the preces- 
sion case after the cyclic evolution (t = 2"tr/to), and with the simplifying 
assumptions 

(c+, c_)  = ( 1 / f i , / / ~ ) ,  r = 0 

we can obtain the following expressions: 

P~ = sin O sin(ix_ - Ix+) 

Py = cos ( ix -  - Ix+) 

(18) 

(19) 
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where 

Pz = - c o s  O sin(a_ - a+) 

2"rrtoL cos(0 -- O) 
a_  -- a§ = + f~(O) 

0O 

and 

l-l(O) = 2"rr(1 - cos O) 

is the solid angle traversed by the magnetic field. 

(20) 

These expressions show that if we subtract the Larmor (local) precession, 
the polarization of the neutron is a case of classic vector parallel transport 
under field precession with a finite angular rate to: the solid angle law is 
conserved. So, in agreement with Definition 2, the neutron spin evolutions 
under magnetic field precession can be qualified as weak nonadiabatic 
changes. 

4. G E N E R A L  SETTING 

The consideration in Section 3 of spin evolution in a precessing field 
was intended to illustrate the holonomic phenomena of Berry and Aharonov- 
Anandan on the level of an exactly solvable problem. But is it enough to 
know the precessing field case for solving the problem announced in Section 
1--calculation of the geometric phase for an arbitrary (and with a finite rate) 
path of motion of a magnetic field on a Poincar~ sphere? The first approach 
connected with this problem, as mentioned, is that of Berry (1987). It is not 
just a theoretical abstraction: one arrives at this question from the analysis 
of experiments as well (Komeev et al., 1995). 

Let us consider some conclusions that arise relating to the basic assump- 
tion of the Aharonov-Anandan approach: 

Conclusion 1. To be exact, from the cyclicity on the level of the vec- 
tor parameter 

R(T) = R(0) 

the corresponding quantum cyclic analog does not follow, 

�9 (T) = eia(T)~It(O) 

but instead, 

qt(T) : ~ Cm(O)eiCtm(T)~ztm(O ) (21) 
m 
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So, the classical cycle does not directly imply the corresponding quan- 
tum cycle. 

Conclusion 2. Moreover, for an arbitrary moment of time t, the expression 

ei~(t)W ( t ) 

cannot be accepted as the general form for the quantum system under nonadia- 
batic evolution. So the Aharonov and Anandan (1987) time integration is 
valid when the general formula 

�9 (t) = ~ Cm(O)eietm(t)~2tm(t) (22) 
m 

is reduced, as in the case of precession, to the separate evolution of the partial 
(with fixed quantum number) basic states. 

Let us consider the general setting. Dirac's standard substitution 

xit(t) = ~ Cm(t)attm(t) 
m 

for the SchrSdinger equation [the corresponding ~(t)  spectrum is assumed 
to be nondegenerate] gives a system of first-degree linear equations: 

C n = 2 C m A m n  
m 

With the aim of understanding the case of neutron spin evolution in 
detail, we shall limit our consideration to a two-level system analysis. As a 
consequence, we obtain well-known standard expressions, i.e., a system of 
two first-degree linear equations 

- i C t  = A(t)Cl(t) + B(t)C2(t) (23) 

- iC2 = C(t)Cl(t) + O(t)C2(t) (24) 

A, B, C, D are equal, 

A(t) = i(~l ,  ~ l )  
h 

B(t) = i(Xttl, ~t2) (25) 

where i(Wm, ~n) are the so-called coefficients of the holonomy connection 
induced by ~n(q, R(t)). As is known, we can separate the equations for C1 
and C2 by passing to second-degree differential equations. They are easy 
to obtain: 

C(t) = i(xP'2, ~1), D(t) = i(xIr2, x~2) ( a t t 2 , / ~ 2 )  h (26) 
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BCL - (B + i(A + D)B)~I + (i([~A - BA) + B2C)CI = 0 (27) 

DC2 - (D + i(C + B)D)(72 + (i(DC - DC ~) + D2A)C2 = 0 (28) 

Finally, with the exponential substitutions 

Cs = exp(iets) = exp[i(% + 13~)] 

f' )] = e x p  i g s d T -  cosd'r , s = l ,  2 

the above equations can be rewritten in the conventional form 

p , C ,  + q , C ,  + r , C ,  = O, s = 1, 2 (29) 

which leads to the following first-degree quadratic equation for g: 

p , (# , ,  + igZs) + (q ,  - 2 ip , to , )g ,  - (p , tb ,  - ip , t% 2 + q, to,  + ir~) (30) 
= 0  

In essence, these are the most general equations determining the geomet- 
ric phases for two-level systems. 

Further steps leading to the solution of  these equations [or equations 
(27), (28)] depend on the behavior of  the holonomic coefficients and the 
expressions above combined with the latter. In the best case they can be 
reduced to ones from a known list of common first- (or second-) degree 
differential equations (Kamke, 1959). 

Nevertheless, it is possible to simplify the above problem as follows: 
evidently the wave function W can be represented in a general form somewhat 
different from (22): 

xI~ = eiU(eizalr 1 + e-izxlJ2) (31) 

eliminating the so-called global phase u. The usefulness of this form becomes 
evident after its substitution into (23), (24): we arrive at the following system 
of first-degree equations: 

2i~ = A - D + B e  -2iz - C e  2iz (32) 

2ift  = A + D + B e  -2iz + Ce 2iz (33) 

which are generally transcendent, but with a separate equation for one of  the 
unknown phases z. 

If we constrain our consideration, however, to observables which do not 
contain time derivatives (like the polarization vector), an easier scheme is 
possible: for the specified class of observables, it is not necessary to know 
the global phase e iu and we can consider only the following partial solution: 

~zt = eizxIt 1 + e-izxlt 2 
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or the equivalent one 

= sin(z)~l + cos(z)~2 (34) 

In Section 5 we explore the representation (34) in a problem which can be 
viewed as an alternative to the precession problem considered in Section 3. 

5. NUTATION 

Let us assume that the time dependence of the magnetic field components 
has the following unusual form: 

Hx = H sin(tot + 0)cos ~b 

Hy = H sin(tot + 0)sin d~ (35) 

H z = H cos(tot + 0) 

where 0 is the initial (axial) polar angle and ~b is the azimuthal angle fixed 
during the magnetic field changes. 

The system (35) is associated directly with the motion on sphere that 
is alternative to precession, i.e., nutation. We use this terminology. 

Is it possible to solve SchrOdinger's equation for neutron spin evolution 
with the time dependence given in (35)? Are there significant differences 
between neutron spin evolution in a nutating field and the well-known case 
of the precessing field? Here we show that this problem is solvable exactly 
and the mentioned difference is significant. 

The substitution of (35) into SchrOdinger's equation 

ih O ~ =  I ~ I H ~  
Ot 

gives 

(~jl) itoL(COS(tot) sin(tot)e-i '~(~bl~ 
t~ 2 -- 2 \sin(tot) e ''~ -cos(tot)}\d~ 2] (36) 

where to is the characteristic frequency of the nutation. For simplicity, we 
assume 0 = 0. 

Let us try to find the solution in the form 

~2 = a( t )~ l  + b(t)~2 

. .[cos(tot12) e-i*~ -i.~La2 _. _[-sin(tot l2)  e-i*~ i.,. t/2 
= a ( t )  I s in ( to t /2 ) )e  + 0(01 cos(tot/2) )e L (37) 
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o r  

As a result, we obtain 

._ ./cos(tot/2) e-itI"~ -i..tt2 to f-sin(tot/2) e- i '~  itOLtl 2 

a(t,~ sin(tot/2) )e  '- + a ( t ) - ~  cos(tot/2) ) e -  

.._ _/-sin(tot/2) e-i~ i.,t,2 to (-sin(tot/2) e - ' ~  itoLtl2 

+ O(t)~ cos(tot/2) )e  ~" - b ( t ) ~  k cos(tot/2) ]e = 0 

t o  t o  - ito t d ~  + a -~ X I ~ 2 e - i t ~  + f )X[ t  2 - -  b "~ Wle L = 0 

Further, using the parametrization announced in Section 4, 

a(t) = sin z(t), b(t) = cos z(t) 

we obtain 

or  

t o  
g(cos Z~l " sin z~2) = ~ (cos Zattle'~Lt -- sin Zalt2e-i~ ) 

After multiplying by (cos z*~T - sin z * ~ )  we have 

~ cosh[2 Im(z)] 

= ~-- {cosh[2 Ira(z)] COS(toLt) + i COS[2 Re(z)]sin(toLt)l 
2 

(38) 

(39) 

d Re(z) _ to COS(toLT ) (40) 
d'r 2 

d Im(z) _ to cos[2 Re(z)] 
sin(toL'r) (41) 

dt 2 cosh[2 Im(z)] 

Let us consider the integration of Re(z): 

Re(z) = COS(toL'r) d'r = ~ sin(toLt) (42) 

This result can be written in another useful form: 

Re(z) -- tot 1 I0 ~- - ~ [1 - cos(toL'r)l d(to'r) (43) 

This expression equals the solid angle drawn by the unit vector in the 
direction of the nutation around the instantaneous position of the polarization 
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vector projection on the local azimuthal ("horizontal") plane. As we will see 
below, the real part of z describes the quantum corrections to the classical 
parallel transport law in the meridian plane ("vertical" drift). Integration of 
the imaginary part gives 

o r  

1 f' 
Im(z) = 5 arcsinh cos[2 Re(z)] sin(tOLl") d'r 

J0 

(44) 

1 f0[  1 Im(z) = ~ arcsinh cos sin(tOLt) sin(toL'r) d'r (45) 

The latter represents an integral which can be expressed through incom- 
plete cylindrical functions (Whittaker and Watson, 1927; Agrest and Maksi- 
mov, 1965) 

e~(i~3, Z) = 1 I if~ eUht_~tdt = 1 13 ezsi.o_~odO 
1ri 3o ar Jo 

or Weber functions 

B~(~, z) = ~ sin(re - z sin O) dO 

As a result, we obtain 

Im(z) = 5 arcsinh 

--5--1arcsinh{~176176 (46) 

Let us consider the expressions for the components of the polarization 
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vector P. Under the two simplifying assumptions ~b = 0 and t = 2"tr/toL it is 
easy to obtain the following remarkable expressions: 

1 

cosh(2 Im(z)) 

Py = tanh[2 Im(z)] 

.1 
Pz - cosh[2 Im(z)] 

sin[ Ro,z, (47) 

(48) 

(49) 

So, the variable weight in (39) is a significant result. It is generated by 
the imaginary part of the geometric phase and cannot be ignored (calibrated) 
because it carries information about the spin evolution. 

It is important that the quantum phases in the arguments above do not 
vanish for the elementary cyclic nutation--the excursion of the magnetic 
field along one of the meridians during the first half of the period, -trio, and 
in the opposite direction for the second half of the period. 

C o n c l u s i o n  3 (Theorem) .  T h e  paths on the Poincar6 sphere for a magnetic 
field can be taken as a consequence of two alternative types of motion: 
precession and nutation. The corresponding evolutions for the polarization 
vector differ significantly: weak nonadiabatic changes in the case of preces- 
sion and strong nonadiabatic changes in the case of nutation. 

Let us apply this approach to the more complex problem discussed in 
Berry (1990). 

6. T W I S T E D  L A N D A U - Z E N E R  P R O B L E M  

This problem corresponds to the following magnetic field configuration: 

nx = A cos[~(t)] 

Hy = A sin[r (50) 

H z = A t  

The question arising in connection with this problem is the following: 
For A ---> 0, this problem should transform into the precession problem 
discussed above. However, the expression for the geometric phase obtained 
in Berry (1990) has a singularity in this limit: 

BA 2 
I'g = -'rr - ~  sgn(A) ---> oo 
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where B = ~ / 2  = const. This shows that the quasiclassical conclusions 
founded on the representat ion 

~ i~/A 

Fg = - 2  Im d'r dp cos 0 
-10 

cannot be  accepted as satisfactory and must  be improved.  
Let  us search for  the solution in the fol lowing form: 

( , 1 )  :cos(O. (f~?! e-. i~fO~ei(,++~t+ ) 
~b 2 = sin z(t) \ sm(t~(t)12) ] 

. .[-sin(O(t)12) e-i*(o~,ff~ +~ ) 
+ cos z(t)l \ cos(O(t) /2)  )e" - - (51) 

where 

and 

13_+ = -v- z coL(r) COS[0( '0 - O( ' r ) ]  dx 

"V_+ = [1 - cos Ol'r)] d ~  

(52) 

( 5 3 )  

CoL(t) = 2~H(t)lh, H(t) = ~/A 2 + A2t 2 (54) 

0(t) = arctan(A/At) (55) 

O(t) / A ( t )  + COL(t ) COS 0 -- co(t) 
COS ~ -- 3 /  2A(t) (56) 

d'l'(O 
co(t) = ~ (57) 

dt 

A(t) is determined as in Section 3. 
Steps similar  to the ones in Section 5 give us the fol lowing expressions:  

Re(z) = ~ cos[Aa( 'r) l  dO (58) 

Im(z) = ~ arcsinh cos[2 Re(z)] sin[Aa(a')] dO (59) 

where Aot = or_ - ~x+ = 13_ - 13+ + ~/- - ~/+. 
These  values vanish when A ---) 0, ~ ~ 0 and, as a result, we obtain the 

proper  limit: the state corresponding to the evolut ion in the precessing field. 
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The most general expressions (58) and (59) do not reduce to known 
incomplete functions, but they can be simplified and reduced to the latter in 
two important limiting modes: the plane accelerated mode 

A - > 0 ,  ~ : ~ 0  

and the untwisted mode or axial lift 

�9 (t) = const 

This problem, of course, deserves a more detailed description, but we confine 
ourselves here to the remarks above. 

7. SUMMARY 

Generally, the picture of quantum evolution differs from (quasi) classical 
parallel transport. In particular, as we have seen, the picture of neutron spin 
evolution naturally contains the nutation mode, and one cannot ignore the 
nutation mode in the geometric-phase iterative calculation in the general case, 
i.e., for arbitrary configuration of the magnetic field moving at a finite rate. 
Conceptually, we have to accept, for logical completeness, that Berry's anzatz 
(the existence of the holonomy connection) must be applied to the amplitudes 
and constants of normalization, too. As a consequence, the general consider- 
ation must be nonunitary. Generally, in a quantum setting the term "topological 
phase" is incorrect: the precise notion is definitely "geometric phase." 
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